
Abstract. A novel scheme to improve the computational
efficiency of the Dirac–Hartree-Fock method was im-
plemented and tested in different model systems. The
method uses a one-center approximation to remove all
multicenter electron-repulsion integrals over the small-
component basis. In all cases we found the associated
errors to be below chemical accuracy, which makes the
method suitable for routine application to molecules
that contain heavy elements.
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1 Introduction

Molecular calculations that employ the four-component
Dirac–Coulomb or Dirac–Coulomb–Breit Hamiltonian
have only recently become feasible [1, 2, 3, 4, 5]. The
large computational demand that a four-component
method makes is mostly due to the evaluation and
handling of two-electron integrals that involve the small
components of the wave function. Since these integrals
contribute relatively little to the electronic energy it is
appropriate to reduce their evaluation time by making
judicious approximations. The simplest of these, com-
plete neglect of an entire class of integrals, was
considered in previous work [6] and has been remarkably
successful in making larger calculations feasible. We
now propose an extension of this method that further
reduces the computational effort.

2 Method

We consider four-component calculations in which the upper and
lower components of the four spinors are expanded in separate

Gaussian type basis sets, vLl ; 0
� �T� �

; 0; vSm
� �Tn o

, that satisfy the
kinetic balance condition
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Expressed in terms of scalar functions the number of small-
component basis functions, NS , is about 3 times larger than the
number of large-component functions, NL. The matrix formulation
of the Hartree–Fock problem is (in atomic units)
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and solutions are found via a self-consistent-field procedure. The
additional work that has to be done relative to a nonrelativistic
Hartree-Fock calculation consists mainly of the evaluation of
contributions to the operators J and K due to the small-component
part of the wave function. It is therefore interesting to consider
approximations that reduce this type of work, ideally to something
that scales linearly with system size.

The first step is to analyze the relative importance of the dif-
ferent contributions to the Fock matrix, F. We start by breaking
down all contributions to the matrix elements of Eq. (2) into
products of integrals and density matrices. We note that the SL
block is related to the LS block by the hermiticity of the Fock
matrix and need not be considered separately. We explicitly label
the M expansion centers of the basis function with a capital
index (A, B, C, D) and indicate the number of large- and small-
(X ¼ L/S) component functions that belong to this expansion
center by NX ;A. Since these expansion centers coincide with the
positions of the nuclei we can use the same labeling for the nuclear
charge, Z. Individual matrix elements may then be labeled as
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Integrals of type VLL and GLL;LL are also required in a nonrela-
tivistic calculation. We consider here the additional ‘‘relativistic’’
integrals. The two-index integrals VSS, PSL and PSL are readily
calculated since their number scales only quadratically with system
size. The other terms show a quartic dependence on the number of
basis functions and are responsible for the notorious computational
bottleneck in four-component Hartree-Fock calculations. In Ref. [6]
the neglect of all the contributions that arise from GSS; SS type inte-
grals was considered. This rather crude approximation – that relies
on the fact that their total contribution is small compared to other
contributions in the SS block of the matrix – works surprisingly well.
It suffices to add an a posteriori correction to the electronic energy to
account for the neglected electron repulsion energy. The error in the
wave function, evenwhenprobedwith sensitive properties such as the
electric field gradient on the nucleus [7], appears to be negligible.

The success of this simple method inspired us to explore this
scheme further and to develop a new method that is computa-
tionally more efficient and possibly also numerically more accurate.
The central idea is to rely on the localized nature of the small
component of the wave function to systematically disregard all
contributions to the potential-energy-matrix elements that involve
small component integrals over functions with a different expansion
center. In contrast to the old method we therefore do not disregard
all GSS; SS type of integrals, but keep the pure one-center contri-
butions. This should improve the screening of the nuclear potential
and may thus give a more accurate wave function near the nuclei.
The approximated integrals become

1GSS;AB;LL;CD ¼ GSS;AB;LL;CDdAB ; ð9Þ

1GLL;AB;SS;CD ¼ GLL;AB;SS;CDdCD ; ð10Þ

1GSS;AB;SS;CD ¼ GSS;AB;SS;CDdABdCD ; ð11Þ
which reduces the computational scaling from quartic to cubic or
quadratic. For consistency, we found it also necessary to apply the
approximation to the two-index integrals as well:

1V
SS;AB
N ¼ V

SS;AB
N dAB : ð12Þ

An obvious extension to the approximations just made is to
make the secondary approximation
2GSS;AB;SS;CD ¼ GSS;AB;SS;CDdABdCDdAC ð13Þ
and to use the distance-dependent part of the simple Coulombic
energy correction of Ref. [6] to correct the error due to the partial
neglect of repulsion between core electrons on different atoms. We
call the approximation defined by lines 9 to 12 method 1 and define
method 2 as method 1 plus the secondary approximation (Eq. 13).

Let us consider the errors made when applying these approxi-
mation methods. The first error comes from the replacement of the
full Coulomb potential,
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by an approximated potential. The error is proportional to
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This error is due to the neglect of overlap between the small-
component wave functions of atoms A and B. While this is cer-
tainly not a good approximation for the large-component part of
the wave function it should work quite well for the small-compo-
nent part that is both more localized and less affected by changes
due to molecule formation.

Another error arises upon calculation of matrix elements over
this potential. The error for matrix elements in the SS block is
proportional to

DFSS;AB
lm ¼

Z
vS;A

y

l ðrÞV ðrÞvS;Bm ðrÞdrA 6¼ B : ð16Þ

This term may become substantial for matrix elements that
involve diffuse functions. Since the contribution to the energy is
weighted by small-density matrix elements this should not affect
the calculated electronic energy much. The problem is, however,
that the erroneous matrix elements cause instabilities in the iter-
ative Hartree-Fock procedure and unphysical positron orbital
energies. In calculations we have seen variational collapse when
only the approximations in Eqs. (9), (10), and (11) were applied.
Simultaneous application of the approximation in Eq. (12) – i.e.,
making the full potential appear in Eq. (16) – prevented this
behavior, although some energies in the positronic range turned
out to be far too low. This is an artifact due to near-linear
dependencies in the basis and is discussed later. The true error is
roughly proportional to the value of the potential outside the core
region (for matrix elements over diffuse functions) or is propor-
tional to the overlap between core functions on different atoms
(for matrix elements over tight functions). In both cases the errors
are rather small.

Apart from these errors in the Coulomb part of the repulsion we
also find errors in the nonlocal exchange terms. KLL is calculated
exactly since it contains only contributions from the GLL;LL type
integrals, but the other blocks are affected by the one-center
approximation. We write the KSL block as
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and see that errors are weighted by the size of the molecular orbital
(MO) coefficients. Again, we can expect small errors because we
either have little overlap (tight functions) or a small value of the
MO coefficient CS,D

k,i (diffuse functions). For the K
SS block the

same argument holds but the error should be even smaller in both
absolute (because wS

i appears instead of wL
i) and in relative sense

(because the contribution is to the SS block that is dominated by
the rest-mass energy).

On physical grounds we thus expect small errors caused by
the approximations made in method 1. In practice we do,
however, sometimes see significant errors, in particular, in the
eigenvalue spectrum of the positron solutions. This can be
related to the presence of near-linear dependencies in the basis
set. The density matrix in the primitive nonorthogonal basis set
is formed via a Löwdin back transformation of the matrix in the
orthogonal basis set. Because small-component basis sets are
quite dense it is not uncommon to find transformation coeffi-
cients of the order of a hundred or larger. For diffuse functions
that have a large overlap with diffuse functions on another
center, the transformation may cause dramatic magnification of
relatively small errors in the nonorthogonal basis. This problem
could, of course, be avoided by introducing a more sophisticated
criterion for neglect of integrals that takes the actual overlap into
account. A disadvantage is that introduction of a more sophis-
ticated testing scheme may degrade the computational efficiency.
Moreover investing effort in further tuning of the procedure is
not very useful because the desired accuracy need not be high.
We are concerned with the generation of a part of the potential
that arises from less than 1% of the density (the first error
discussed earlier) and by representing the full potential in matrix
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elements that are dominated by the 2c2 rest-mass term (the
second error). In radon we have 0.63e or 0.7% of the charge in
the small-component density; in neon this is only 0.03%. It
suffices to correct artifacts due to near-linear dependencies to
stabilize the Hartree-Fock self-consistent-field procedure. It turns
out that this can be achieved by applying a simple projection
method that does not affect the computational efficiency and
simplicity of the original scheme. Refinements of this simple
procedure could, if necessary, be taken into account when the
computational scaling of the large-component or nonrelativistic
part of the calculation is also tackled by introduction of more
sophisticated approximate treatments.

The central idea in the projection method is to evaluate only
one-center integrals over small-component functions to avoid the
costly evaluation of multicenter integrals. The missing integrals
should either be neglected or approximated by a sum of one-center
integrals.

To find the expression in terms of one-center integrals we define
the projection operator, P,

PSS;AB ¼ SSS;AA
� ��1

SSS;AB ; ð18Þ

which projects a small-component function on center B on the set
of functions available on A:

vS;Bm  PSS;AB
lm vS;Al : ð19Þ

Neglected different multicenter integrals can then be taken into
account by using the symmetric expression

GAB;CD  1

4
Py� �AB

Py� �CD
GBB;DD þ GAA;CCPABPCD

n
þ Py� �AB

GBB;CCPCD þ Py� �CD
GAA;DDPAB

o
: ð20Þ

Direct implementation of this formula saves integral-evaluation
time but does not make the Fock matrix construction more effi-
cient. In order to improve this step, we consider the Coulomb and
exchange contributions separately. For evaluation of the Coulomb
interaction the projection is broken down into two steps. The SS
part of the density matrix is written as

1DAA  DAA þ 1

2

XM
B6¼A

DAB Py� �BAþPABDBA
� �

ð21Þ

to correct the error described in Eq. (15). This corrected density
matrix is used to build an approximate Fock matrix that is block-
diagonal in the expansion center label. The missing off-diagonal
blocks are then generated according to

FAB  1

2
1FAAPAB þ Py� �AB1FBB
� �

: ð22Þ

This step reduces the error defined in Eq. (16). In both cases we
see that the averaging of the left and right expanded matrices
preserves the hermiticity of the Fock and density matrices, so use of
permutational symmetry is still possible.

The error made in the exchange interaction requires a slightly
different approach because this interaction cannot be factorized
in the same manner as the Coulomb interaction. We chose the
alternative expression

GAD;CB  Py� �CB
GAA;BBPAD ð23Þ

to modify only the density matrix

1DAB  DAB þ PADDDC Py� �CB
: ð24Þ

The implementation of this procedure is simple with as major
drawback the fact that the Coulomb and exchange parts of the
Fock matrix need be evaluated separately owing to the difference in
projected density matrices. This was not necessary in the original
algorithm and gives a slight reduction in efficiency for small
molecules. For larger molecules, separate treatment of exchange
and Coulomb contributions is, however, more efficient because
of improved screening of negligible contributions in the direct
Hartree-Fock algorithm.

3 Applications

The methods described here were implemented in the
DIRAC program system [8] by a minimal change of
existing code. We chose three different model systems to
test the validity of the approach. The most demanding
test on the accuracy is to take two heavy elements
that have a relatively short bond length. This means that
two extensive basis sets are present and that we have
significant small-component charges on both atoms. We
took the CsAu molecule, for which reference results of
Saue et al. [4] are available. On the other hand, we can
take a large ‘‘nonrelativistic’’ system in which good
accuracy should be easily reached but where the ideal
computational scaling may be more difficult to achieve.
We studied the computational scaling for varying
lengths of polyacetylene chains. In between is the
situation where one has a heavy atom close to a light
molecule. As an example, a system of palladium and
methane was chosen.

All the calculations were carried out on a 450 MHz
Pentium III-based computer running under the Linux
operating system. The convergence and screening
thresholds were chosen such that accurate comparison of
small energy differences was possible. In production runs
these criteria could be relaxed, leading to more favorable
timings, especially for the not approximated GLL,LL

integral evaluations.

3.1 The CsAu molecule

The uncontracted Cs (23s17p10d1f) and Au
(23s18p14d8f) basis sets of Saue et al. [4] were used.
Small-component basis sets were generated via the
restricted kinetic balance procedure. The geometry and
harmonic frequency of the molecule were determined via
a quadratic fit of five points spaced 0.01 Å around the
minimum. The calculations were only done without the
projection scheme.

The results displayed in Table 1 demonstrate that
neglect of two-center integrals does not introduce large
errors in either of the two methods. The decrease in
total computational effort is modest because a relatively
large amount of the GSS,LL integrals is still to be
calculated. The effort involved in the calculation of the
GSS,SS integrals – which dominated the computation
time in earlier calculations – is, however, reduced
significantly.

Table 1. Spectroscopic properties and computational efficiency of
CsAu as calculated with the different schemes mentioned in the text

Method Re

(Å)

De

(kcal mol)1)
xe

(cm)1)
Computation
time (h)

Reference 3.412 )25.4413 78.80 17.5
1 3.413 )25.4259 78.77 11.3
2 3.413 )25.4253 78.77 9.0
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3.2 Polyacetylene chains

The relativistically recontracted cc-pVDZ basis sets were
used. These consist of (9s5p1d|3s2p1d) large-component
basis sets for carbon and (4s1p|2s1p) for hydrogen. The
contracted small-component basis sets generated via the
unrestricted kinetic balance procedure consist of
(5s10p5d1f|2s4p3d1f) for carbon and (1s4p1d|1s2p1d)
for hydrogen, which clearly illustrates the strong in-
crease in the number of basis functions in the relativistic
domain. The geometry of the chains was fixed with a C–
H bond length of 1.08 Å, C–C lengths of 1.45 Å, C=C
lengths of 1.34 Å and bond angles of 120�. The errors in
the calculated total energies are shown in Table 2.

The atomization energy of, for example, C2H4 was
calculated to be 486 kcal mol)1, so the errors are indeed
very small. However, comparison with CsAu shows that
the errors are larger, which is surprising because the
constituting atoms are much lighter. This is due to the
rather large near-linear-dependence effects in the small-
component basis set. For the CsAu basis, we could use
the restricted kinetic balance procedure since the basis
set was left uncontracted. This was not possible for the
contracted sets used for carbon and hydrogen, so the
numerically less stable unrestricted kinetic balance pro-
cedure had to be used. Actually the observed pro-
nounced deviations in especially the positronic levels
stimulated us to derive and apply the projection method
that was discussed previously. This scheme reduces the
error in the positronic energies by orders of magnitude

and also reduces the error in the total energy (that is
solely determined by the electronic energy levels) by an
order of magnitude. The remaining error should be
sufficiently small for most practical purposes.

The reduction in computational effort is apparent
from the numbers in Table 3. Where the evaluation time
of GSS,SS integrals used to be the bottleneck, it becomes
almost negligible in the different approximation
schemes. The scaling of the timings with system size for
method 2 is also displayed in Fig. 1, where we plot the
computation time needed to evaluate the two-electron
interaction as a function of system size (number of
primitive basis functions). On the double-logarithmic
plot one can see that the GSS,LL integral evaluation ini-
tially exhibits cubic scaling with system size, as expected
from Eq. (10), and levels off to quadratic as the system
grows and conventional screening techniques take effect.
The scaling of the GSS,SS integral evaluation starts linear,
in accordance with Eq. (13). At larger system size it
dramatically increases to quartic behavior. The reason
for this is that some initial steps in the integral evalua-
tion have a quartic scaling with the number of basis
functions shells and were not eliminated in the present
implementation. Since the absolute timings are so small
this is not really a problem.

3.3 Palladium and methane

For palladium, a contracted basis set
(24s16p13d|7s6p6d) of K. Faegri Jr. (personal commu-
nication) was used. The small-component basis set
(16s24p16d13f|5s8p6d6f) was generated via the unre-
stricted kinetic balance procedure. For carbon and
hydrogen cc-pVTZ basis sets were used, consisting
of (10s6p2d1f|4s3p2d1f) and (5s2p1d|3s2p1d) basis sets
for carbon and hydrogen, respectively, in the large-
components and the-small component basis sets
(6s12p7d2f1g|3s6p5d2f1g) and (2s6p2d1f|2s4p2d1f)
which were generated via the unrestricted kinetic balance
procedure. The geometry was taken from the work of
Diefenbach and Bickelhaupt [9] (geometry 1d in their
Fig. 1). The calculations were only done without the
projection scheme.

The results are displayed in Table 4 and demonstrate
again that the neglect of two-center integrals does not
introduce large errors in methods 1 and 2. The compu-
tational effort decreases significantly.

Table 2. Errors due to the approximation schemes in polyacetylene
chains of varying lengths

Molecule Without projection With projection

Total
energy
(kcal mol)1)

Positronic
orbital
energy (au)

Total
energy
(kcal mol)1)

Positronic
orbital
energy (au)

C2H4 0.100 )22,271 )0.006 95
C4H6 0.218 )64,296 )0.002 169
C6H8 0.344 )164,324 0.017 270
C8H10 0.469 )289,668 0.043 380
C10H12 0.594 )447,673 0.069 459
C12H14 0.719 )588,564 0.095 544
C14H16 0.844 )722,984 0.122 545
C16H18 0.969 )844,892 0.148 655
C18H20 1.094 )940,619 0.174 692
C20H22 1.219 )1,012,264 0.201 718

Table 3. Computation time (s)
in each iteration as a function of
system size for the polyacetylene
chains for methods 1 and 2, for
each of the integral classes
G

LL,LL (LL), G
SS,LL (SL) and

G
SS,SS (SS)

LL SL SL (I) SS SS (I) SS (II)

C2H4 4 29 7 90 5 1
C4H6 29 292 44 862 18 2
C6H8 114 1,177 128 3,331 43 4
C8H10 267 2,922 266 7,725 76 8
C10H12 486 5,437 454 13,817 122 15
C12H14 769 8,827 689 22,045 179 25
C14H16 1,123 12,834 980 31,544 255 40
C16H18 1,540 17,684 1,328 42,740 347 63
C18H20 2,026 23,266 1,731 55,439 455 94
C20H22 2,638 30,114 2,226 70,028 589 136
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4 Conclusions

The computational effort of four-component molecular
calculations can be greatly reduced by disregarding all
integrals that involve small-component functions on
different expansion centers. For three model systems,
CsAu, polyacetylene chains, and a palladium–methane
complex, it was shown that the errors due to the
approximation are below chemical accuracy. Unphysi-
cally large errors that occurred in some cases were shown
to be due to linear dependencies in the small-component
basis and can be avoided by applying a simple projection
method. The computational speed-up varied from a
factor of 2 for CsAu to more than 20 for the largest
polyacetylene chain.

The new method makes the Dirac–Hartree-Fock
method applicable to large molecules. Generalization to
four-component density functional theory is trivial and

an implementation will probably become available in a
new release of the DIRAC program system. General-
ization to ab initio correlated calculations will also be
considered in due course.
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Pd–CH4 system as calculated with the different schemes mentioned
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Method Error in total
energy (kcal mol)1)

Computation
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1 0.61 17.0
2 0.61 13.3
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